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Buerger  (1956, 1959) has shown how part ial  Four ie r  
syntheses can be used in the  solution of crystal  s t ructures  
which have  supers t ructure  characterist ics.  Summarizing,  
we can divide such s tructures  into two par ts :  (i) the  sub- 
s t ructure ,  comprising t ha t  par t  of the  electron densi ty  
which conforms to the  per iodici ty  of the  sub-cell (or 
pseudocell),  and  (ii) the  complement  s t ructure ,  comprising 
the  rest  of the  electron densi ty,  which has only the 
periodici ty  of the  t rue  cell. At  least one of the ident i ty  
periods of the  t rue  cell or supers t ructure  is a mult iple  of 
the  corresponding period of the  substructure .  Therefore 
the  reciprocal lat t ice of the supers t ructure  contains an 
ext ra  set of points (the 'excess points ')  compared with  the 
reciprocal lat t ice points der ived from the subs t ructure  
cell. The complement  s t ruc ture  alone is responsible for 
these excess points.  Buerger  (1959) gives a d iagram for a 
simple example  involving the doubling of one axis of the 
sub-cell. 

The question is then  posed, wha t  is the Fourier  trans- 
form of these excess supers t ructure  points alone ? The 
answer given is t ha t  it is simply a pa t t e rn  of the sealed 
down electron densi ty  of the  complement  s t ructure .  The 
just if icat ion is quoted  in the next  paragraph.  

'To see this, consider the  Fourier  t ransform of a single 
uni t  cell of the  complement  s t ructure.  This t ransform is 
a cont inuously  vary ing  function.  The Fourier  t ransform 
of the  repet i t ion of these cells on a lat t ice is a periodic 
sampling of the  Four ier  t ransform of the uni t  cell, the  
sampling occurring at  the  points of the reciprocal lat t ice 
of the  complement  s t ructure .  I f  the sampling interval is 
arbitrarily changed, the result is the same, except for scale 
of weighting'. (My italics, J . W . J . )  

Actual ly  the  result  is not  the same, in two ways:  
(1) If  the  sampling interval  is changed the  repeat2  

period in real space is changed.  In  part icular ,  if th~:~ 
sampling period is increased the real period will l~:(: 
decreased and  the t ransforms (the unit-cell  contents) a t  
each of the  new latt ice points will overlap. 

(ii) The sampling interval  mus t  be regular,  starting from 
the origin. This is not  the  case wi th  the excess points. 

However ,  the  t ransform of the excess points is un- 
doubtedJy something like the complement  s t ructure ,  in 
some cases a t  least, and  a ra the r  more elaborate  justifica- 
t ion of its use is given below, in terms of the subtrac t ion 
of t ransforms,  for the simple case of one doubled axis. 

The Fourier  transform of the exces s  p o i n t s  

(i) Fo rm the  t ransform of the whole reciprocal lattice. 
This is the  t rue  cell contents .  

(i_i) Separate  out  t ha t  par t  of the  s t ructure  factor a t  
the  sub-cell reciprocal points which is due to the sub- 
s t ruc ture  alone. Subt rac t  the  t ransform of these par ts  
(i.e. the  substructure)  from (i). We are then left with the 
complement  s t ructure .  ~ 

(iii) The remaining  par ts  of the s t ructure  factors a t  the 
sub-cell points  then  const i tu te  a sampling of the  comple- 
men t  s t ruc ture  t ransform at  twice the normal  repeat  
distance. This will t ransform to the complement  s t ruc ture  

wi th  one half the actual  electron density,  repea ted  on a 
lat t ice one half the size of the  t rue  lat t ice (i.e. a set of 
overlapping complement  s t ructures  centred  on the  sub- 
cell lat t ice points). If  we then  proceed to subt rac t  this  
from the  complement  s t ructure  left a t  (ii) above, we first 
of all reduce it to half the previous electron densi ty and 
then  we have to subtract  the overlapping parts  of the  
electron densi ty  centred on neighbouring sub-cell lat t ice 
points. Since there  can be no coincident  peaks produced 
by this overlap the only effect will be to produce dips in 
the background and  the complement  s t ruc ture  peaks 
will s tand out clearly. 

So far only the simplest case of a sub-cell formed by  a 
halving in one direction has been considered. The situa- 
t ion m a y  be improved if the volume of the  sub-cell is a 
smaller fraction of tha t  of the t rue  cell. If  halving occurs 
in three directions the electron densi ty  to be subt rac ted  
in (iii) will be only one eighth of t ha t  left in (ii) and there  
will be seven overlapping cells cont r ibut ing  to a negat ive  
background which will obviously t end  to be much  more  
uniform than  for the case considered above. 

In  the above analysis it has been tac i t ly  assumed,  fol- 
lowing Buerger,  t ha t  we are dealing wi th  real electron 
density.  If  this restr ict ion is relaxed so t ha t  we can deal 
wi th  negat ive electron densities, the  subst ructure  can 
be defined as the average electron densi ty  of the  sub- 
cells comprising the complete supers t ructure .  The 
complement  s t ruc ture  is obta ined by subtrac t ing this 
subst ructure  from each of the sub-cells of the  super- 
s t ructure.  The complement  s t ruc ture  will then  contain  
as much negat ive electron densi ty dis tr ibut ion as positive, 
so tha t  

.V 

q(rn + R )  = 0 
~ I  ,. 

for all R, where rn define the origins of the  _h: sub-cells. 
The s t ructure  factors for such a complement  s t ruc ture  
at  the sub-cell reciprocal points are zero. I t  follows t ha t  
the t ransform of the excess points ( together wi th  the  
zero weight  sub-cell points) is the  complement  s t ruc ture  
when defined in this way.  

The Patterson transform of the e x c e s s  p o i n t s  

The Pa t te rson  t ransform of the excess points is likewise 
the  Pa t te rson  t ransform of this complement  s t ruc ture  
with equal t 0tals of positive and negative electron density, 
and Frueh  (1953) has shown that  this can be in terpre ted  
in a simple case of segregation of a toms of two kinds in 
the equivalent  sub-cell positions. :However, in some cases 
it m a y  be easier to interpret  such a Pa t te rson  t ransform 
in tdrms of positive electron densi ty,  as was done pre- 
viously for Fourier  transforms. This is cer tainly at least  
as easy in the ease considered by Frueh  as is his inter- 
t?retation in terms of a 'difference s t ructure '  containing 
equal positive and negat ive peaks. I t  m a y  be, in fact,  
that. the  negat ive electron densi ty  approach is the  best 
way of deriving a e o m p h m e n t  Pa t te rson  t ransform from 
a given structure,  but that  the reverse, the  der ivat ion 
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of the  complement  structure from a given excess points 
Pa t te rson  transform, is best done in terms of real electron 
density.  In  terms of real electron density,  if Fs is the  
s t ructure  factor for the  sub-cells and  Fc for the  comple- 
men t  structure,  then  at  the  sub-cell reciprocal latt ice 
points 

h+c = (Fs +Fc) 2 = Fs 2 + 2Fs. Fc +Fc  2 . 

The Fc 2, together  wi th  those for the  excess points, are the  
t ransform of the  Pa t te rson  funct ion of the  (real) comple- 
m e n t  structure.  Fs ~ + 2Fs.Fc transforms to the  Pa t te rson  
funct ion of the  sub-structure plus the  cross vectors 
be tween the  sub-structr.-:~ and  the complement  structure. 
The t ransform of the  • ,,ess points, weighted  with the  
intensit ies,  is thus  the ~led down version of the  Pat ter -  
son funct ion of the  ~ tJ~plement structare,  wi th  a back- 
ground of overlapp" 4 negat ive Pa t te rson  functions of 
the  complement  .¢ ucture, exact ly analogous to the  
Fourier  case. I-Iow , er, even in the  most  favourable case 
of a Pa t te rson  function, it will be necessary to allow for 
the  large negat ive origin peaks at  the  sub-cell lattice 

points,  and  where the  superstructure is due to small 
displacements  from ideal positions the  cluster of posit ive 
and  negat ive peaks round the  ideal posit ion will t end  to 
cancel out. This is a part icular  case of the  general possibil- 
ity, which occurs in the  case of Pa t te rson  functions, of 
coincident or near  coincident positive and negat ive peaks. 
Projections will t end  to suffer more from such cancella- 
t ions t han  three-dimensional  syntheses.  

The referee's help, especially in point ing out m a n y  of 
the  implications of the  negat ive electron densi ty  approach, 
is gratefully acknowledged.  
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Techniques for the  growth, orientat ion and  X-ray 
diffraction s tudy of single crystals of fl-N 2 (Streib & 
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Fig. 1. Crystal structure of fl-F 2 and of y-O 2. Out-of-plane 
coordinates are indicated for each molecular center, except 
for those at z= 0, which are unlabeled. The two molecules 
at 000 and ½½ ½ are approximately spherically disordered. 
The other six molecules, at ¼½0, 0¼{-, {.0~, -~½0, 0~½ and 
½0~, show an oblate spheroidal distribution of electron 
density such that the ratio of major to minor axis is about 
two. Minor axes are aligned along the shortest intermolecular 
contacts (3.3A in F2, 3.4A in O~) along x(y= ½, z=O), along 
y(x=O, z=½) and along z(x=½, y=O). Bond distances of 
1.21 A for O9. and 1.42 A for F 2 were assumed. 

Lipscomb, 1962; Streib, Jo rdan  & Lipscomb, 1962)have  
been ex tended  to single crystal studies of fl-F~ at  50 °K 
and  ~-O 2 at 50 °K. These phases have,  surprisingly, the  
same s t ructure- type (Fig. 1). Unit-cell  dimensions are 
a = 6 . 6 7  +_0.07/~_ for fl-F~ and 6.83 +_0.05 ~ for y-O 2, and  
there  are eight diatomic molecules in the  uni t  cell. 
Systematic absences of hhl when 1 is odd suggest space 
groups P43n or Pm3n, but  our results indicate an orienta- 
t ionally disordered structure in Pm3n. 

In fl-F~ each F~ at 000 or at ½ ½ ½ has 12 F 2 neighbors 
at 3-7 ~ between molecular centers. Each of the other 
F2's has 2Fg's at 3.3/~, 4Fe's at 3.71 and 8F2's at 
4.1 /~. Van der Waals contacts are 2.7 ~ if two Fu's have 
their molecular axes perpendicular to, or 4-1 /~ if their 
axes are along, the line of contact. Thus, the disorder is 
strongly hindered along the infinite linear chains of F~ 
molecules separated by 3.3 A. We have verified the 
presence of a major transition, suspected by Murphy & 
Rubin (1952) because of an entropy discrepancy, and found 
by Hu, White & Johnston (1953), but we have obtained 
only powder photographs of a-F 2 by cooling single crystals 
of fl-F 2 through the  t ransi t ion point  at  45.55 °K. 

The essential ident i ty  of the  7-O~ and fl-F~ structures 
makes untenable  any description of 7-02 based upon 
dimers of O~ (Ruhemann,  1932; Vegard, 1935), and  
further  suggests tha t  the  unusual  magnet ic  properties of 
7-02 (Kanda, Haseda & Otsubo, 1955) do not  determine 
the  structure. The presence of infinite linear chains of 0 2 
molecules is consistent with the  very short range inter- 
actions suspected by  I4:anda et al. (1955) (Knobler, 1961; 
Lien & Phillips, 1961), but  this structure raises serious 
questions about  the  existence of dimers in the  other  solid 
phases and in solution (Lewis, 1924; Pauling, 1960). 
Even  the  nearly spherically disordered molecules at 000 


