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SHORT COMMUNICATIONS

Partial Fourier syntheses. By J. W.Jerrery, Crystallography Laboratory. Birkbeck College, University of

London, England

(Received 11 October 1963 and in revised form 1 January 1964)

Buerger (1956, 1959) has shown how partial Fourier
syntheses can be used in the solution of erystal structures
which have superstructure characteristics. Summarizing,
we can divide such structures into two parts: (i) the sub-
structure, comprising that part of the electron density
which conforms to the periodicity of the sub-cell (or
pseudocell), and (ii) the complement structure, comprising
the rest of the electron density, which has only the
periodicity of the true cell. At least one of the identity
periods of the true cell or superstructure is a multiple of
the corresponding period of the substructure. Therefore
the reciprocal lattice of the superstructure contains an
extra set of points (the ‘excess points’) compared with the
reciprocal lattice points derived from the substructure
cell. The complement structure alone is responsible for
these excess points. Buerger (1959) gives a diagram for a
simple example involving the doubling of one axis of the
sub-cell.

The question is then posed, what is the Fourier trans-
form of these excess superstructure points alone? The
answer given is that it is simply a pattern of the scaled
down electron density of the complement structure. The
justification is quoted in the next paragraph.

‘To see this, consider the Fourier transform of a single
unit cell of the complement structure. This transform is
a continuously varying function. The Fourier transform
of the repetition of these cells on a lattice is a periodic
sampling of the Fourier transform of the unit cell, the
sampling occurring at the points of the reciprocal lattice
of the complement structure. If the sampling interval is
arbitrarily changed, the result is the same, except for scale
of wetghting’. (My italics, J.W.J.)

Actually the result is not the same, in two ways:

(1) If the sampling interval is changed the repeat:
period in real space is changed. In particular, if the;

sampling period is increased the real period will bé&::

decreased and the transforms (the unit-cell contents) at
each of the new lattice points will overlap. '
(ii) The sampling interval must be regular, starting from
the origin. This is not the case with the excess points.
However, the transform of the excess points is un-
doubtedly something like the complement structure, in
some cases at least, and a rather more elaborate justifica-
tion of its use is given below, in terms of the subtraction
of transforms, for the simple case of one doubled axis.

The Fourier transform of the excess points

(1) Form the transform of the whole reciprocal lattice.
This is the true cell contents.

(ii) Separate out that part of the structure factor at
the sub-cell reciprocal points which is due to the sub-
structure alone. Subtract the transform of these parts
(i.e. the substructure) from (i). We are then left with the
complement structure. .

(iii) The remaining parts of the structure factors at the
sub-cell points then constitute a sampling of the comple-
ment structure transform at twice the normal repeat
distance. This will transform to the complement structure

with one half the actual electron density, repeated on a
lattice one half the size of the true lattice (i.e. a set of
overlapping complement structures centred on the sub-
cell lattice points). If we then proceed to subtract this
from the complement structure left at (ii) above, we first
of all reduce it to half the previous electron density and
then we have to subtract the overlapping parts of the
electron density centred on ncighbouring sub-cell lattice
points. Since there can be no coincident peaks produced
by this overlap the only effect will be to produce dips in
the background and the complement structure peaks
will stand out clearly.

So far only the simplest case of a sub-cell formed by a
halving in one direction has been considered. The situa-
tion may be improved if the volume of the sub-cell is a
smaller fraction of that of the true cell. If halving occurs
in three directions the electron density to be subtracted
in (iii) will be only one eighth of that left in (ii) and there
will be seven overlapping cells contributing to a negative
background which will obviously tend to be much more
uniform than for the case considered above.

In the above analysis it has been tacitly assumed, fol-
lowing Buerger, that we are dealing with real electron
density. If this restriction is relaxed so that we can deal
with negative electron densities, the substructure can
be defined as the average electron density of the sub-
cells comprising the complete superstructure. The
complement structure is obtained by subtracting this
substructure from each of the sub-cells of the super-
structure. The complement structure will then contain
as much negative electron density distribution as positive,

so that
Y

2orn+R) =0

n=1 :
for all R, where r, define the origins of the N sub-cells.
The structure factors for such a complement structure
at the sub-cell reciprocal points are zero. It follows that
the transform of the excess points (together with the
zero weight sub-cell points) ¢s the complement structure

~when defined in this way.

The Patterson transform of the excess points

The Patterson transform of the excess points is likewise
the Patterson transform of this complement structure

with equal totals of positive and negative electron density,
and Frueh (1953) has shown that this can be interpreted
in a simple case of segrcgation of atoms of two kinds in
the equivalent sub-cell positions. However, in some cases
it may be ecasier to interpret such a Patterson transform
in térms of positive electron density, as was done pre-
viously for Fourier transforms. This is certainly at least
as easy in the case considered by Fruch as is his inter-
pretation in terms of a ‘difference structure’ containing
equal positive and negative peaks. It may be, in fact,
that the negative elcctron density approach is the best
way of deriving a complcment Patterson transform from
a given structure, but that the reverse, the derivation
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of the complement structure from a given excess points
Patterson transform, is best done in terms of real electron
density. In terms of real electron density, if F; is the
structure factor for the sub-cells and F, for the comple-
ment structure, then at the sub-cell reciprocal lattice
points

Isie=(Fs+Fc)? = F24-2F; . F.+ FZ.

The F?2, together with those for the excess points, are the
transform of the Patterson function of the (real) comple-
ment structure. F2 + 2F;.F, transforms to the Patterson
function of the sub-structure plus the cross vectors
between the sub-structv ~» and the complement structure.
The transform of the - :ess points, weighted with the
intensities, is thus the uled down version of the Patter-
son function of the ¢« (nplement structure, with a back-
ground of overlapp 3 negative Patterson functions of
the complement s ucture, exactly analogous to the
Fourier case. How .er, even in the most favourable case
of a Patterson function, it will be necessary to allow for
the large negative origin peaks at the sub-cell lattice
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points, and where the superstructure is due to small
displacements from ideal positions the cluster of positive
and negative peaks round the ideal position will tend to
cancel out. This is a particular case of the general possibil-
ity, which occurs in the case of Patterson functions, of
coincident or near coincident positive and negative peaks.
Projections will tend to suffer more from such cancella-
tions than three-dimensional syntheses.

The referee’s help, especially in pointing out many of
the implications of the negative electron density approach,
is gratefully acknowledged.
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Techniques for the growth, orientation and X-ray
diffraction study of single crystals of S-N, (Streib &
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Fig. 1. Crystal structure of B-F, and of y-O,. Out-of-plane
coordinates are indicated for each molecular center, except
for those at z=0, which are unlabeled. The two molecules
at 000 and %43 are approximately spherically disordered.
The other six molecules, at }30, 0}3%, 30}, 240, 031 and
303}, show an oblate spheroidal distribution of electron
density such that the ratio of major to minor axis is about
two. Minor axes are aligned along the shortest intermolecular
contacts (3:34 in F,, 3-44 in 0,) along z(y =4, 2=0), along
y(x=0, z=14) and along z(zx=14, y=0). Bond distances of
1-21 A for O, and 1-42 A for F, were assumed.

Lipscomb, 1962; Streib, Jordan & Lipscomb, 1962) have
been extended to single crystal studies of §-F, at 50 °K
and y-0, at 50 °K. These phases have, surprisingly, the
same structure-type (Fig.1). Unit-cell dimensions are
a=6-67 +0-07 A for 8-F, and 6-83 +0-05 A for -0,, and
there are eight diatomic molecules in the unit cell.
Systematic absences of hhl when I is odd suggest space
groups P43n or Pm3n, but our results indicate an orienta-
tionally disordered structure in Pm3n.

In B-F, each F, at 000 or at 1 I 1 has 12 F, neighbors
at 3-7 A between molecular centers. Each of the other
F,’s has 2F,’s at 3-3 A, 4 F,’s at 37 A and 8 F,’s at
4-1 A. Van der Waals contacts are 2-7 A if two F,’s have
their molecular axes perpendicular to, or 4-1 A if their
axes are along, the line of contact. Thus, the disorder is
strongly hindered along the infinite linear chains of F,
molecules separated by 3-3 A. We have verified the
presence of a major transition, suspected by Murphy &
Rubin (1952) because of an entropy discrepancy, and found
by Hu, White & Johnston (1953), but we have obtained
only powder photographs of «-F, by cooling single crystals
of B-F, through the transition point at 45-55 °K.

The essential identity of the y-O, and B-F, structures
makes untenable any description of y-O, based upon
dimers of O, (Ruhemann, 1932; Vegard, 1935), and
further suggests that the unusual magnetic properties of
y-0, (Kanda, Haseda & Otsubo, 1955) do not determine
the structure. The presence of infinite linear chains of O,
molecules is consistent with the very short range inter-
actions suspected by Kanda et al. (1955) (Knobler, 1961;
Lien & Phillips, 1961), but this structure raises serious
questions about the existence of dimers in the other solid
phases and in solution (Lewis, 1924; Pauling, 1960).
Even the nearly spherically disordered molecules at 000



